3.3.68 \(\int \frac {(A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx\) [268]

Optimal. Leaf size=139 \[ -\frac {2 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)}}+\frac {2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{d \sqrt {b \cos (c+d x)}} \]

[Out]

2/3*A*b*sin(d*x+c)/d/(b*cos(d*x+c))^(3/2)+2*B*sin(d*x+c)/d/(b*cos(d*x+c))^(1/2)+2/3*(A+3*C)*(cos(1/2*d*x+1/2*c
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)-2*
B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b
/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {16, 3100, 2827, 2716, 2721, 2719, 2720} \begin {gather*} \frac {2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{d \sqrt {b \cos (c+d x)}}-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[b*Cos[c + d*x]],x]

[Out]

(-2*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b*d*Sqrt[Cos[c + d*x]]) + (2*(A + 3*C)*Sqrt[Cos[c + d*x
]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*A*b*Sin[c + d*x])/(3*d*(b*Cos[c + d*x])^(3/2)) +
 (2*B*Sin[c + d*x])/(d*Sqrt[b*Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx &=b^2 \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{5/2}} \, dx\\ &=\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 \int \frac {\frac {3 b^2 B}{2}+\frac {1}{2} b^2 (A+3 C) \cos (c+d x)}{(b \cos (c+d x))^{3/2}} \, dx}{3 b}\\ &=\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+(b B) \int \frac {1}{(b \cos (c+d x))^{3/2}} \, dx+\frac {1}{3} (A+3 C) \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx\\ &=\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{d \sqrt {b \cos (c+d x)}}-\frac {B \int \sqrt {b \cos (c+d x)} \, dx}{b}+\frac {\left ((A+3 C) \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 \sqrt {b \cos (c+d x)}}\\ &=\frac {2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{d \sqrt {b \cos (c+d x)}}-\frac {\left (B \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{b \sqrt {\cos (c+d x)}}\\ &=-\frac {2 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)}}+\frac {2 (A+3 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{d \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.35, size = 757, normalized size = 5.45 \begin {gather*} \frac {\cos ^3(c+d x) \left (C+B \sec (c+d x)+A \sec ^2(c+d x)\right ) \left (\frac {4 B \csc (c) \sec (c)}{d}+\frac {4 A \sec (c) \sec ^2(c+d x) \sin (d x)}{3 d}+\frac {4 \sec (c) \sec (c+d x) (A \sin (c)+3 B \sin (d x))}{3 d}\right )}{\sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x))}-\frac {4 A \cos ^{\frac {5}{2}}(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \left (C+B \sec (c+d x)+A \sec ^2(c+d x)\right ) \sec (d x-\text {ArcTan}(\cot (c))) \sqrt {1-\sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {1+\sin (d x-\text {ArcTan}(\cot (c)))}}{3 d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {4 C \cos ^{\frac {5}{2}}(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \left (C+B \sec (c+d x)+A \sec ^2(c+d x)\right ) \sec (d x-\text {ArcTan}(\cot (c))) \sqrt {1-\sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\text {ArcTan}(\cot (c)))} \sqrt {1+\sin (d x-\text {ArcTan}(\cot (c)))}}{d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \csc (c) \left (C+B \sec (c+d x)+A \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\text {ArcTan}(\tan (c)))\right ) \sin (d x+\text {ArcTan}(\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\text {ArcTan}(\tan (c)))} \sqrt {1+\cos (d x+\text {ArcTan}(\tan (c)))} \sqrt {\cos (c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\text {ArcTan}(\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\text {ArcTan}(\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x))} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[b*Cos[c + d*x]],x]

[Out]

(Cos[c + d*x]^3*(C + B*Sec[c + d*x] + A*Sec[c + d*x]^2)*((4*B*Csc[c]*Sec[c])/d + (4*A*Sec[c]*Sec[c + d*x]^2*Si
n[d*x])/(3*d) + (4*Sec[c]*Sec[c + d*x]*(A*Sin[c] + 3*B*Sin[d*x]))/(3*d)))/(Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B
*Cos[c + d*x] + C*Cos[2*c + 2*d*x])) - (4*A*Cos[c + d*x]^(5/2)*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin
[d*x - ArcTan[Cot[c]]]^2]*(C + B*Sec[c + d*x] + A*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x -
 ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c
]]]])/(3*d*Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4*C*C
os[c + d*x]^(5/2)*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(C + B*Sec[c + d*x]
 + A*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*S
in[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B*
Cos[c + d*x] + C*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) + (2*B*Cos[c + d*x]^(5/2)*Csc[c]*(C + B*Sec[c + d*x] +
A*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c
]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + Arc
Tan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2]
+ (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTa
n[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(507\) vs. \(2(175)=350\).
time = 0.73, size = 508, normalized size = 3.65

method result size
default \(\frac {2 \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 A \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 B \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 C \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}}{3 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sqrt {b \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}\) \(508\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b/sin(1/2*d*x+1/2*c)^3/(4*sin(1/2*d*x+1/2*c)^4-4
*sin(1/2*d*x+1/2*c)^2+1)*(2*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+6*B*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+6*C*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2
*c)^2+2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-3*B*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4*b+sin(1/2*
d*x+1/2*c)^2*b)^(1/2)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)^2/sqrt(b*cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.11, size = 202, normalized size = 1.45 \begin {gather*} \frac {\sqrt {2} {\left (-i \, A - 3 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, A + 3 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} B \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} B \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, b d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-I*A - 3*I*C)*sqrt(b)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) +
 sqrt(2)*(I*A + 3*I*C)*sqrt(b)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*
sqrt(2)*B*sqrt(b)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x +
c))) + 3*I*sqrt(2)*B*sqrt(b)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I
*sin(d*x + c))) + 2*(3*B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sin(d*x + c))/(b*d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {b \cos {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**2/(b*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)**2/sqrt(b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)^2/sqrt(b*cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^2\,\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(b*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(b*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________